中国科学院东北地理与农业生态研究所机构知识库
Advanced  
NEIGAE OpenIR  > 湿地与全球变化学科组  > 期刊论文
Title: Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm
Author: X. L. Jin, Z. H. Li, G. J. Yang, H. Yang, H. K. Feng, X. G. Xu, J. H. Wang, X. C. Li and J. H. Luo
Corresponding Author: 金秀良
Source: Isprs Journal of Photogrammetry and Remote Sensing
Issued Date: 2017
DOI: 10.1016/j.isprsjprs.2017.02.001
Volume: 126, Pages:24-37
Abstract: Timely and accurate estimation of winter wheat yield at a regional scale is crucial for national food policy and security assessments. Near-infrared reflectance is not sensitive to the leaf area index (LAI) and biomass of winter wheat at medium to high canopy cover (CC), and most of the vegetation indices displayed saturation phenomenon. However, LAI and biomass at medium to high CC can be efficiently estimated using imaging data from radar with stronger penetration, such as RADARSAT-2. This study had the following three objectives: (i) to combine vegetation indices based on our previous studies for estimating CC and biomass for winter wheat using HJ-1A/B and RADARSAT-2 imaging data; (ii) to combine HJ-1A/B and RADARSAT-2 imaging data with the AquaCrop model using the particle swarm optimization (PSO) algorithm to estimate winter wheat yield; and (iii) to compare the results from the assimilation of HJ-1A/B + RADARSAT-2 imaging data, HJ-1A/13 imaging data, and RADARSAT-2 imaging data into the AquaCrop model using the PSO algorithm. Remote sensing data and concurrent LAI, biomass, and yield of sample fields were acquired in Yangling District, Shaanxi, China, during the 2014 winter wheat growing season. The PSO optimization algorithm was used to integrate the AquaCrop model and remote sensing data for yield estimation. The modified triangular vegetation index 2 (MTVI2) x radar vegetation index (RVI) and the enhanced vegetation index (EVI) x RVI had good relationships with CC and biomass, respectively. The results indicated that the predicted and measured yield (R-2 = 0.31 and RMSE = 0.94 ton/ha) had agreement when the estimated CC from the HJ-1A/B and RADARSAT-2 data was used as the dynamic input variable for the AquaCrop model. When the estimated biomass from the HJ-1A/B and RADARSAT-2 data was used as the dynamic input variable for the AquaCrop model, the predicted yield showed agreement with the measured yield (R-2 = 0.42 and RMSE = 0.81 ton/ha). These results show that using the biomass as the dynamic input variable provides a better yield estimation than using the CC as the dynamic variable. The predicted biomass and yield were more accurately estimated by combining the HJ-1A/B and RADARSAT-2 data with the AquaCrop model than by combining the only HJ-1A/B or RADARSAT-2 data with the AquaCrop model using the PSO algorithm. The results indicated that the PSO-based assimilation method could be used to estimate the winter wheat yield from the spot to the regional scale. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iga.ac.cn/handle/131322/7528
Appears in Collections:湿地与全球变化学科组_期刊论文

Files in This Item:

There are no files associated with this item.

Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[X. L. Jin, Z. H. Li, G. J. Yang, H. Yang, H. K. Feng, X. G. Xu, J. H. Wang, X. C. Li and J. H. Luo]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[X. L. Jin, Z. H. Li, G. J. Yang, H. Yang, H. K. Feng, X. G. Xu, J. H. Wang, X. C. Li and J. H. Luo]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Powered by CSpace