中国科学院东北地理与农业生态研究所机构知识库
Advanced  
NEIGAE OpenIR  > 湿地与全球变化学科组  > 期刊论文
Title: Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China
Author: P. J. Yu, S. W. Liu, K. X. Han, S. C. Guan and D. W. Zhou
Corresponding Author: 禹朴家,周道玮
Source: Agriculture Ecosystems & Environment
Issued Date: 2017
DOI: 10.1016/j.agee.2017.05.013
Volume: 245, Pages:83-91
Abstract: Soil labile carbon (C) and enzyme activities are valuable indicators of changes in soil quality and health. Understanding the changes in soil labile C and enzyme activities under different land uses is important to maintain soil quality and health and for sustainable land use. The primary objective of this study was to investigate the short-term influences of different land uses on SOC, soil labile C and enzyme activities in semiarid alkaline grassland of northeastern China. The experiment was organized as a block design with four replications of each land use treatment. Land use treatments were corn cropland (Corn), alfalfa forage land (Alfalfa), Lyemus chinensis grassland (AG), Lyemus chinensis grassland for mowing (AG + Mow) and restored grassland (RG), which were applied for five years. Total soil organic carbon (SOC), three labile C pools (oxidizable labile C; water-extractable organic C; microbial biomass C) and the activities of four soil enzymes (catalase; urease; alkaline phosphatase; invertase) were determined at the 0-20 cm depth in the five land use treatments. Results showed that soil labile C and enzyme activities were sensitive indicators of land use change. Conversion of cropland to forage land and grassland increased SOC (40.42%), soil labile C measures (25.50%) and enzyme activities (55.60%). However, the responses of different forms of soil labile C and enzyme activities to different land uses were not similar. Under Corn, AG + Mow, AG and RG land uses, the geometric means of labile C (27.01%, 10.95%, 17.52% and 5.11%, respectively) and enzyme activities (40.92%, 13.54%, 11.38% and 7.38%, respectively) were lower than those under Alfalfa, demonstrating that soil labile C and enzyme activities improved more under Alfalfa than under other land uses in northeastern China. Significant correlations were also obtained between SOC, soil labile C measures and enzyme activities. To conclude, soil labile C and enzyme activities can be expected to gradually increase with the conversion of cropland to grasslands and forage land, and planting to alfalfa offers a profitable and sustainable solution to our requirement for pairing forage production with rapid restoration of soil quality in the areas in which soils are not suitable for growing crops in the Songnen Grassland.
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iga.ac.cn/handle/131322/7564
Appears in Collections:湿地与全球变化学科组_期刊论文

Files in This Item:

There are no files associated with this item.

Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[P. J. Yu, S. W. Liu, K. X. Han, S. C. Guan and D. W. Zhou]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[P. J. Yu, S. W. Liu, K. X. Han, S. C. Guan and D. W. Zhou]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Powered by CSpace