中国科学院东北地理与农业生态研究所机构知识库
Advanced  
NEIGAE OpenIR  > 湿地与全球变化学科组  > 期刊论文
Title: Optimum water supplement strategy to restore reed wetland in the Yellow River Delta
Author: X. H. Wang, D. J. Zhang, B. Guan, Q. Qi and S. Z. Tong
Corresponding Author: 佟守正
Source: Plos One
Issued Date: 2017
DOI: 10.1371/journal.pone.0177692
Volume: 12, Issue:5
Abstract: In order to supply optimum water to restore reed wetlands used for bird habitats, a field investigation and greenhouse experiment were conducted. Three water supplementation stages (early stage at 20 May, middle stage at 20 July and later stage at 20 September, respectively) and five depths (0, 10, 15, 20 and 35 cm over the surface, respectively) were established, with three replicates for each treatment combination. Reed growth characteristics (survival rate, height, density and biomass) and soil properties of field investigation and experiment were recorded to determine the impacts of water supplementation on reed wet-land restoration. The field investigation showed that reeds in natural wetlands grow better than those in degraded wetlands and soil properties in degraded wetlands were significantly different from soils in natural wetlands. With freshwater supplementation, reed growth characteristics and soil properties greatly improved. As water depth increased, reed growth decreased gradually. Reeds grew best in shallow water depth (<= 10cm) than in the greater flooding depths. Saturated soils with no standing water at the early stage of reed growth increased reed survival and water depth can be increased as the reeds grow. During the process of water supplementation, soil salinity was reduced significantly. Soil salinity was reduced dramatically at early and middle stages of reed growth, but it increased slightly at the later stage. Soil pH increased greatly during the experiment. Soil total nitrogen (TN) and total organic carbon (TOC) showed contrasting changes, with soil TN decreasing and TOC increasing. To best manage reed wetlands restoration, we suggest saturating wetland in the spring to stimulate reed germination, increasing surface water depth up to 15cm at the stage of reed rapid growth, and then reducing water depth during the later growth stage.
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iga.ac.cn/handle/131322/7585
Appears in Collections:湿地与全球变化学科组_期刊论文

Files in This Item:

There are no files associated with this item.

Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[X. H. Wang, D. J. Zhang, B. Guan, Q. Qi and S. Z. Tong]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[X. H. Wang, D. J. Zhang, B. Guan, Q. Qi and S. Z. Tong]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Powered by CSpace