NEIGAE OpenIR  > 湿地与全球变化学科组
Comparison of different satellite bands and vegetation indices for estimation of soil organic matter based on simulated spectral configuration
X. L. Jin, K. S. Song, J. Du, H. J. Liu and Z. D. Wen; Song KS(宋开山)
2017
发表期刊Agricultural and Forest Meteorology
卷号244页码:57-71
摘要Soil organic matter content (SOM) is an important indicator of soil productivity that governs biological, chemical, and physical processes in the soil environment. Previous studies have shown that remote sensing data provide useful information for SOM estimation in different soil types. However, no studies have estimated SOM based on simulated spectral configurations of different satellite sensors. Further study is required to investigate whether SOM estimation accuracy can be improved by combining data from different satellite sensors and developing appropriate algorithms. Therefore, this study investigated new methods for SOM estimation with the following three objectives: (1) analyze the reflectance changes of simulated bands for different SOMs using the spectral response function of various satellite sensors; (2) develop optimal difference index (ODI), optimal ratio index (ORI), optimal normalized vegetation difference index (ONDVI), and optimal enhanced vegetation index (OEVI) algorithms for estimating SOM based on simulated band reflectance; (3) evaluate all bands, ODI, ORI, ONDVI, and OEVI for all simulated bands derived from the data of each satellite, and then combine the simulated data to estimate SOM using the particle swarm optimization (PSO)-support vector machine (SVM) algorithm. The OEVI analysis of simulated WorldView-2 data provided the best SOM estimation accuracy (R-2 = 0.43 and RMSE = 2.62%). The OEVI and ODI algorithms provided better estimation accuracy of SOM from the different simulated satellite data than the ORI and ONDVI algorithms. The best estimation accuracy of SOM was achieved using the PSO-SVM algorithm and simulated WorldView-2 data (R-2 = 0.77, RMSE = 1.66%, and AIC = 99.62). Combination of simulated bands 4-9 of ASTER data and all bands, ODI, ORI, ONDVI, and OEVI of WorldView-2 data provided optimum SOM estimation results (R-2 = 0.82, RMSE = 1.41%, AIC = 82.86). The results indicate that a combination of different satellite data and the PSO-SVM algorithm significantly improves the estimation accuracy of SOM.
DOI10.1016/j.agrformet.2017.05.018
WOS记录号WOS:000408296500006
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.iga.ac.cn/handle/131322/7656
专题湿地与全球变化学科组
通讯作者Song KS(宋开山)
推荐引用方式
GB/T 7714
X. L. Jin, K. S. Song, J. Du, H. J. Liu and Z. D. Wen,Song KS. Comparison of different satellite bands and vegetation indices for estimation of soil organic matter based on simulated spectral configuration[J]. Agricultural and Forest Meteorology,2017,244:57-71.
APA X. L. Jin, K. S. Song, J. Du, H. J. Liu and Z. D. Wen,&宋开山.(2017).Comparison of different satellite bands and vegetation indices for estimation of soil organic matter based on simulated spectral configuration.Agricultural and Forest Meteorology,244,57-71.
MLA X. L. Jin, K. S. Song, J. Du, H. J. Liu and Z. D. Wen,et al."Comparison of different satellite bands and vegetation indices for estimation of soil organic matter based on simulated spectral configuration".Agricultural and Forest Meteorology 244(2017):57-71.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[X. L. Jin, K. S. Song, J. Du, H. J. Liu and Z. D. Wen]的文章
[宋开山]的文章
百度学术
百度学术中相似的文章
[X. L. Jin, K. S. Song, J. Du, H. J. Liu and Z. D. Wen]的文章
[宋开山]的文章
必应学术
必应学术中相似的文章
[X. L. Jin, K. S. Song, J. Du, H. J. Liu and Z. D. Wen]的文章
[宋开山]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。