中国科学院东北地理与农业生态研究所机构知识库
Advanced  
NEIGAE OpenIR  > 湿地与全球变化学科组  > 期刊论文
Title: Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China
Author: Q. Yao, J. J. Liu, Z. H. Yu, Y. S. Li, J. Jin, X. B. Liu and G. H. Wang
Corresponding Author: 王光华
Source: Soil Biology & Biochemistry
Issued Date: 2017
DOI: 10.1016/j.soilbio.2017.03.005
Volume: 110, Pages:56-67
Abstract: Although biochar amendment has been extensively evaluated as a promising strategy to improve soil quality, most evaluations have been conducted in the laboratory or under short-term field conditions, which restricted us to understand the long-term effects of biochar as a soil amendment. As the residence time of biochar in soils is expected to be hundreds to thousands of years, this study focused on revealing whether biochar addition influences soil physiochemical properties and fungal community composition in a black soil of northeast China over the long term. Biochar was added to the micro-plots at 0%, 2%, 4%, and 8% of the total mass of the top 20 cm of the soil in the spring of 2012, and soil samples were collected seasonally four times in 2014. The results indicate that soil pH, moisture, total C, total N, total P,NO3--n available K and the C/N ratio significantly increased but soil bulk density and total K content decreased with biochar addition. The soil fungal abundance determined using quantitative real-time PCR showed that the number of fungal ITS gene copies increased with biochar addition. The soil fungal community composition determined using the Illumina MiSeq sequencing method showed that community diversity was not influenced by biochar addition but the community composition was influenced. The impact of biochar on changes in community composition was not reflected at the phylum level, but at the genus and operational taxonomic units (OTU) levels. The relative abundance of Fusarium decreased, but Gue-homyces increased with biochar addition over the first three sampling dates. The relative abundances of several OTUs classified as potential crop pathogens decreased with biochar addition, suggesting that biochar amendment may be beneficial in terms of suppressing the occurrence of crop disease over the long term. In addition, canonical correspondence analysis indicated that fungal community composition was associated with soil parameters such as pH, soil moisture, total C, total N, total K and available K. The changes in these soil characteristics were highly correlated with the amounts of biochar addition, suggesting that the impacts of long-term biochar amendment on the soil fungal community occurred indirectly as a result of the alteration of soil physiochemical properties. (C) 2017 Elsevier Ltd. All rights reserved.
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iga.ac.cn/handle/131322/7664
Appears in Collections:湿地与全球变化学科组_期刊论文

Files in This Item:

There are no files associated with this item.

Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Q. Yao, J. J. Liu, Z. H. Yu, Y. S. Li, J. Jin, X. B. Liu and G. H. Wang]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Q. Yao, J. J. Liu, Z. H. Yu, Y. S. Li, J. Jin, X. B. Liu and G. H. Wang]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Powered by CSpace