NEIGAE OpenIR  > 湿地生态系统管理学科组
Spatiotemporal Distribution of Satellite-Retrieved Ground-Level PM2.5 and Near Real-Time Daily Retrieval Algorithm Development in Sichuan Basin, China
C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen
2018
发表期刊Atmosphere
卷号9期号:2
其他摘要Satellite-based monitoring can retrieve ground-level PM2.5 concentrations with higher-resolution and continuous spatial coverage to assist in making management strategies and estimating health exposures. The Sichuan Basin has a complex terrain and several city clusters that differ from other regions in China: it has an enclosed air basin with a unique planetary boundary layer dynamic which accumulates air pollution. The spatiotemporal distribution of 1-km resolution Aerosol Optical Depth (AOD) in the Sichuan Basin was retrieved using the improved dark pixel method and Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The retrieved seasonal AOD reached its highest values in spring and had the lowest values in autumn. The higher correlation (r = 0.84, N = 171) between the ground-based Lidar AOD and 1-km resolution MODIS AOD indicated that the high-resolution MODIS AOD could be used to retrieve the ground-level PM2.5 concentration. The Lidar-measured annual average extinction coefficient increased linearly with the Planetary Boundary Layer Height (PBLH) in the range of 100 similar to 670 m, but exponentially decreased between the heights of 670 similar to 1800 m. Both the correlation and the variation tendency of simulated PBLH from the Weather Research and Forecasting (WRF) model & Shin-Hong (SHIN)/California Meteorological (CALMET) model (WRF_SHIN/CALMET) were closer to the Lidar observation than that of three other Planetary Boundary Layer (PBL) schemes (the Grenier-Bretherton-McCaa (GBM) scheme, the Total Energy-Mass Flux (TEMF) scheme and the University of Washington (UW) scheme), which suggested that the simulated the Planetary Boundary Layer Height (PBLH) could be used in the vertical correction of retrieval PM2.5. Four seasonal fitting functions were also obtained for further humidity correction. The correlation coefficient between the aerosol extinction coefficient and the fitted surface-level PM2.5 concentration at the benchmark station of Southwest Jiao-tong University was enhanced significantly from 0.62 to 0.76 after vertical and humidity corrections during a whole year. During the evaluation of the retrieved ground-level PM2.5 with observed values from three cities, Yibin (YB), Dazhou (DZ), and Deyang (DY), our algorithm performed well, resulting in higher correlation coefficients of 0.78 (N = 177), 0.77 (N = 178), and 0.81 (N = 181), respectively.
文献类型期刊论文
条目标识符http://ir.iga.ac.cn/handle/131322/9267
专题湿地生态系统管理学科组
推荐引用方式
GB/T 7714
C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen. Spatiotemporal Distribution of Satellite-Retrieved Ground-Level PM2.5 and Near Real-Time Daily Retrieval Algorithm Development in Sichuan Basin, China[J]. Atmosphere,2018,9(2).
APA C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen.(2018).Spatiotemporal Distribution of Satellite-Retrieved Ground-Level PM2.5 and Near Real-Time Daily Retrieval Algorithm Development in Sichuan Basin, China.Atmosphere,9(2).
MLA C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen."Spatiotemporal Distribution of Satellite-Retrieved Ground-Level PM2.5 and Near Real-Time Daily Retrieval Algorithm Development in Sichuan Basin, China".Atmosphere 9.2(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen]的文章
百度学术
百度学术中相似的文章
[C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen]的文章
必应学术
必应学术中相似的文章
[C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。