NEIGAE OpenIR  > 湿地生态系统管理学科组
Spatiotemporal Distribution of Satellite-Retrieved Ground-Level PM2.5 and Near Real-Time Daily Retrieval Algorithm Development in Sichuan Basin, China
C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen
2018
Source PublicationAtmosphere
Volume9Issue:2
Other AbstractSatellite-based monitoring can retrieve ground-level PM2.5 concentrations with higher-resolution and continuous spatial coverage to assist in making management strategies and estimating health exposures. The Sichuan Basin has a complex terrain and several city clusters that differ from other regions in China: it has an enclosed air basin with a unique planetary boundary layer dynamic which accumulates air pollution. The spatiotemporal distribution of 1-km resolution Aerosol Optical Depth (AOD) in the Sichuan Basin was retrieved using the improved dark pixel method and Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The retrieved seasonal AOD reached its highest values in spring and had the lowest values in autumn. The higher correlation (r = 0.84, N = 171) between the ground-based Lidar AOD and 1-km resolution MODIS AOD indicated that the high-resolution MODIS AOD could be used to retrieve the ground-level PM2.5 concentration. The Lidar-measured annual average extinction coefficient increased linearly with the Planetary Boundary Layer Height (PBLH) in the range of 100 similar to 670 m, but exponentially decreased between the heights of 670 similar to 1800 m. Both the correlation and the variation tendency of simulated PBLH from the Weather Research and Forecasting (WRF) model & Shin-Hong (SHIN)/California Meteorological (CALMET) model (WRF_SHIN/CALMET) were closer to the Lidar observation than that of three other Planetary Boundary Layer (PBL) schemes (the Grenier-Bretherton-McCaa (GBM) scheme, the Total Energy-Mass Flux (TEMF) scheme and the University of Washington (UW) scheme), which suggested that the simulated the Planetary Boundary Layer Height (PBLH) could be used in the vertical correction of retrieval PM2.5. Four seasonal fitting functions were also obtained for further humidity correction. The correlation coefficient between the aerosol extinction coefficient and the fitted surface-level PM2.5 concentration at the benchmark station of Southwest Jiao-tong University was enhanced significantly from 0.62 to 0.76 after vertical and humidity corrections during a whole year. During the evaluation of the retrieved ground-level PM2.5 with observed values from three cities, Yibin (YB), Dazhou (DZ), and Deyang (DY), our algorithm performed well, resulting in higher correlation coefficients of 0.78 (N = 177), 0.77 (N = 178), and 0.81 (N = 181), respectively.
Document Type期刊论文
Identifierhttp://ir.iga.ac.cn/handle/131322/9267
Collection湿地生态系统管理学科组
Recommended Citation
GB/T 7714
C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen. Spatiotemporal Distribution of Satellite-Retrieved Ground-Level PM2.5 and Near Real-Time Daily Retrieval Algorithm Development in Sichuan Basin, China[J]. Atmosphere,2018,9(2).
APA C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen.(2018).Spatiotemporal Distribution of Satellite-Retrieved Ground-Level PM2.5 and Near Real-Time Daily Retrieval Algorithm Development in Sichuan Basin, China.Atmosphere,9(2).
MLA C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen."Spatiotemporal Distribution of Satellite-Retrieved Ground-Level PM2.5 and Near Real-Time Daily Retrieval Algorithm Development in Sichuan Basin, China".Atmosphere 9.2(2018).
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen]'s Articles
Baidu academic
Similar articles in Baidu academic
[C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[C. Gao, X. L. Zhang, W. Y. Wang, A. J. Xiu, D. Q. Tong and W. W. Chen]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.